RESPOSTAS E/OU SOLUCOES
SECAO 3.1

1.

[V

(a)Ser<yey<-z.entdor <yey<: Logo.r <z Ser=:z entao
r<yey<r Assim r=y.o que é impossivel. pois r < y. Portanto,
r<z.

(b) Segue do item (a) que nao pode ocorrer simultaneamente r < y e
y < z. Portanto, no maximo uma das condigoes ocorre: r <youz =y

ouxr > y.

A reciproca é clara

- Dados X, Y e Z subconjuntos de 4. E claro que (X. f) < (X. f). Se

(X.f) < (Yig) e (Y.g) < (X.f).
entao X =Y e f = g. Logo. (X. f) = (Y. g). Finalmente. Se
(X.f) < (Y.g) e (Y.g) < (Z.h).

entao

XCYe fl(r)=g(zx). VzeX

Y CZegly =h(y). v yey.
Em particular,

XCZe flz)=h(2). VreX.
Assim, (X, f) < (Z,h). Portanto. < é uma ordem sohre
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3. Dados (a.b).(c.d).(e. f) € A x B, obtemos

.Dados r.y.z€ A. Eclaroque z < z,poisz =1-2. Sex <yey < x,
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(a,b) < (a.b).
poisa=aeb<b. Se (a,b) < (c,d) e (c.d) =< (ab), entdo

a<coua=ceb<d

c<aouc=aed<b

Note que a possibilidade a < ¢ e ¢ < a nao pode ocorrer. Assim, a = ¢,
b<ded<b, isto ¢ (a,b) = (c.d). Finalmente, se (a,b) < (c,d) e
(c.d) < (e. f), entao

a<coua=ceb<d

c<eouc=eed<f.

Note que se a < ce ¢ < e, entao a < e e (a,b) < (e, f). Agora, se
a=c=e.b<ded< f.entaoa=-e.b< fe(ab) < (e f). Portanto,

< é uma ordem sobre A x B.

entao existem r,s € A tais que y = rr e r = sy. Logo,

y = rx=r(sy)=(rs)y
= rs=1
= r=1.

Assim. = = y. Finalmente, se z < y e y < z, entao existem r, s € A tais

que y = rr e z = sy. Logo.
z = sy = s(rz) = (rs)z.

Assim, r < z. Portanto, < ¢ uma ordem sobre A.
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5. Dados (a.b).(c.d).(e. f) € A. obtemos
(a.b) < (a.b).
poisa=aeb<bh. Se(a.b) < (c.d)e (c.d) =< (a.b). entao

a=ceb<d

a=ced<h.

Assim, a = ¢, b < ded < b, isto é. (a.b) = (c.d). Finalmente, se
(a.b) < (c.d) e (c.d) < (e. f). entdo

a=ceb<d

c=eed<f.
Logo.a=c=e b<ded< f ouseja, (a.b) < (e. f). Portanto, < é
uma ordem sobre A.

6. Dados (a.b). (c.d). (e. f) € N x N, obtemos
(a.b) < (a.b).
pois f(a,b) = f(a.b). Se (a.b) < (c.d) e (c.d) < (a.b), entdo
fla.b) < f(c.d) e f(c,d) < f(a.b).

Logo.
fla.b) = f(c.d) = (a.b) = (c.d)

Finalmente, se (a.b) < (c.d) e (¢.d) < (e. f). entdo

fla.b) < flc.d) e f(c.d) < f(e. f).

Logo,
f(a.b) < fle. f) = (a.b) = (e. f).

Portanto. < & nma ordem enhre N v N
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7. Pondo R =)

CAPITULO 3. CONJUNTOS PARCIALMENTE ORDENADOS

i1 Ri- Para quaisquer r.y.z € A. obtemos Rz, para
todo i € I. Logo. xRx. Se (r.y) € R e (y.r) € R. entao 2R,y e yR;x,
para todo ¢ € I. Logo, x = y. Finalmente, se (z.y) € R e (y,2) € R,
entao rR;y e yR,;z, para todo ¢ € I. Assim, rR;z. para todo i € [.

Portanto. rRz. isto é, R ¢ uma ordem sobre A.

. Dados f.g.h € F. obtemos f < f, pois f(x) < f(x), para todo r € A.

Se f<geg=f. entao
f(x) < g(z) e g(x) < fz)., ¥ e A

Logo. f(x) = g(z), para todo r € A, ou seja, f = g. Finalmente, se
f = geqg=h. entao

flx) <g(z) e glx) < h(z), V x € A.
Assim,
flx) < h(x). ¥V e A,

ou seja, f < h. Portanto, < é uma ordem sobre F que nao ¢é total, pois
se b.c € B nao sdo compardveis, entdo as funcdes constantes flxy=be

g(r) = c. para todo = € A, ndo sdao comparsveis.
Dados (a.b).(c.d), (e. f) € A x B, obtemos

(a.b) < (a.b).
poisb=bea<a. Se(a,b) < (c.d)e(c.d) = (a.b), entdao

b<doub=dea<c

d<boud=bec<a.

Note que a possibilidade b < d e d < b ndao pode ocorrer. Assim, b = d,
a <cec<a,istoé, (a.b) = (c.d). Finalmente, se (a,b) = (c,d) e
(c.d) =< (e. f), entao

b<doub=dea<c
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d<foud=fec<e

Note que se b < ded < f.entdo b < f e (a.b) < (e. f). Agora, se
b=d=f.a<cec<e. entaob=f.a<ee(ab) = (e f) Portanto,

< é uma ordem sobre 4 x B.

Dados (a.b).(c.d) € C x D. obtemos a.c € C e b.d € D. Assim, por
hipétese. [a <coua=couc<a]elb<doub=doud < b]. Logo,
se a < c, entdo (a.b) < (c.d). Sea=rc.entaob <de (a.b) =< (c.d) ou
b=de (a.b) = (c.dyoud < be (c.d) = (a.b). De modo inteiramente
anslogo faz o caso ¢ < a. Portanto. (a.b) = (c.d) ou (a.b) = (c.d) ou
(c.d) < (a,b), ou seja, C' x D é uma cadeia de AXx B.

Como END =0e EUD = B temos que
(AxE)N(AxD)=0e (AXxE)U(AxD)=AxB.
Agora, se (a.b) € A x E e (z.y) < (a.b), entdo
y<bouy=bexr<a.

Se y < b, entdo y € E, pois b € E. Se y = b, entao y € E. Portanto,
em qualquer caso. (r.y) € A x E. Finalmente, se (c.d) € Ax D e
(c.d) < (z.w). entao

y<bouy=bezxr<a.

Se y < b, entdo y € E, pois b€ E. Se y = b, entdao y € E. Portanto, em
qualquer caso, (r.y) € A x E

Dados a.b.c € A, existem tnicos i.j.k € I tais que a € A;, b€ Aje
cc Ay Eclaroquea <a. Sea<beb=a.entdoi=jea=>b. Agora,
sea < beb = c, entdo temos as seguintes possibilidades i < j e j =k
oui=jej<koui<jej<koui=jej=k Assim, em qualquer
possibilidade a < ¢. Finalmente. como / é totalmente ordenado temos
aue i < ioui=ioui>i Sei< ioui> i entdoa<bouwa> b
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Sei=j.entdo a,b € A; e a <boua=>boua>b Portanto, < é uma
ordem total sobre A.

SECAO 3.2

1.

ut

Dados r.y € A,sex <y ex #y, entdao f(x) < f(y), pois f(z) # f(y) e
f € crescente.

. (a) Dados (a.b).(c,d) € A x B, se (a.b) < (c.d),entdoa < coua=ce

b < d. Assim,
pi(a.b) =a < c=pi(ed).

Portanto. p; é uma funcao crescente.

(b) Dados (a.b), (c.d) € A x B, se (a.b) < (¢,d),entdob < doub=d e
a < c¢. Assim,

pa(a.b) =b < d = py(c,d).

Portanto, p, é uma funcao crescente.

. Dados z.y € f(C), existem a,b € C tais que r = f(a) e y = f(b). Como

(' é uma cadeia temos que a < b ou a > b. Assim, r <y ou & > y, pois
f & crescente. Portanto, f(C') é uma cadeia em B.

. Dadosa.be f7(C)exr e A, coma <z <b Como f écrescente temos

que

fla) < f(z) < f(b).
Por outro lado, sendo a.b € f~1(C), obtemos f(a), f(b) € C e, por
hipétese. f(r) € C. Assim. z € f~'(C). Portanto, fYC') é um subcon-

junto convexo de A.

J4 vimos que T = f~!(b), para todo b € B. Agora, use o Exercicio

anterior.

. Como END=0e EUD = B temos que

fFUE)NfHD) =fHENB)=f7(0) =0
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FFUE)UfU(D)=fYEUD) = f}B) = f\(f(A)) = 4,

pois f é sobrejetora. Agora.sea € f7(E) e r < a.entdo f(a) € E e
f(x) < f(a). pois f é crescente. Assim. f(z) € E. ou seja, r € f~1(E).
Finalmente, se b € f~}(D) e b < y. entao f(b) € D e f(b) < f(y),
pois f é crescente. Assim, f(y) € D. ou seja, y € f!(D). Portanto,
(f~YE). f~Y(D)) é um corte de A.

Vamos provar apenas o item (c). Para isto basta provar f([a.b]) =
[f(a). f(b)]. Dado y € f([a.b]). existe x € [a.}] tal que y = f(z). Como
a <z <be féum isomorfismo temos que f(a) < f(z) < f(b), ou seja,
y € [f(a). f(b)] e f([a.b]) C [f(a). f(b)]. Para verificar a outra inclusao

use f1.

Confira o Exercicio anterior.

Considere a funcao f : A — F definida como f(a) = I,. Entdo f éo
isomorfismo desejado, por exemplo, dados a. b e A, se fla) = f(b). entao
I, = I,. Logo. a =10, pois se a # b. digamos a < b. entao I, C Ip, 0 que
¢ impossivel Portanto, f € injetora.

Vamos provar apenas o item (a). Note que D, = A — E,. para todo
a € A. E claro que E, N D, —(0eE,UD, = A Agora,sebc E, e
r <b, entior < beb<a. Logo.r < aex € E,. Finalmente, se ¢ € D,
ec<y.entdioa<cec<y. Logo.a<yey € D,. Portanto, (E,. Da)
¢ um corte de A, para todo a € A.

Dados r.y € B. existem tnicos a.b € A tais que T = fla) ey = f(b).
Como A é um conjunto totalmente ordenado temos que a < boua=»5d

ou a > b. Assim.
r=fla) < f(b)=youzx=fla)=f(b)=y ou = f(a) > f(b) =y,

pois f é um isomorfismo. Portanto. B ¢ um conjunto totalmente orde-

nado.
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SECAO 3.3

1. Vamos provar apenas os itens (a) e (c): (a) Note que

a+b
a<b=>2a=a+a<a+b=>a<—2—.
Por outro lado,
a+b
a<b:>a+b<b+b=2b=>T<b.
Portanto,
a+b
a< < b.

(c¢) Suponhamos, por absurdo, que a > 0. Entao existe ¢¢ = a —€ > 0

tal que 0 < €y < a, o que é uma contradigao. Portanto, a = 0.

. Basta provar que

inf(B) = mdc(ay, as, . . ., a,) e sup(B) = mmc(ay,as,...,a,).

Vamos provar apenas o item (c). Sejam ¢ = sup(C') e d = sup(D). Entao
r < d, para todo x € D. Em particular, y < d, para todo y € C, pois
C C D. Portanto, d é uma cota superior de C' e ¢ < d, por defini¢ao.
Afirmagao dual: se C, D sao subconjuntos de A, C' C D e cada C e D
possui infimo em A, entdo inf(C) < inf(D).

Dados M € f7'(b) ex € A, se M < z, entdo f(M) < f(x), pois f &
crescente. Como b= f(M) e b é um elemento maximal de B temos que
b= f(z). Portanto, M = z, pois se M < x, entao b = f(M) < f(z) = b,
0 que é impossivel. Neste caso, cada elemento de f~!(b) € um elemento
maximal de A.

Dado y € f(A), existe z € A tal que y = f(z). Como a é o maior
elemento de A temos que z < a, para todo z € A. Assim, f(z) < f(a),
para todo z € A. Em particular,

y = f(z) < f(a).

Portanto, f(a) é o maior elemento de f(A).
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Confira o Exercicio anterior.

Vamos provar apenas o item (c¢). Suponhamos que r € A seja uma cota
superior de C. Entdo a < z, para todo a € C. Dado c € f(C), existe

um tnico b € C tal que ¢ = f(b). Como b < r temos que
c=f(b) < f(z).
Portanto, f(z) € B é uma cota superior de f(C'). Para provar a reciproca

use fL.

. Pelo Exemplo 3.28. () possui um supremo e um infimo. os quais sao neces-

sariamente o menor elemento e o maior elemento de A, respectivamente.

. Dado r € [a.b] N [c.d]. obtemos

a<r<bec<r<d&eac<zrexr<bd

Logo. por definigao.
sup{a.c} <z e z < inf{b.d} & sup{a,c} <r < inf{b, d}.

Assim. z € [sup{a. c}.inf{b.d}] e reciprocamente. Portanto,

[a.b] N [c.d] = [sup{a.c}.inf{b, d}].

Dados ¢.d € [a.b]. obtemos M = sup{c.d} € A. Como c.d < b temos
que M < b, pois M é a menor das cotas superiores de {c.d}. Assim,

M € [a.b]. De modo inteiramente analogo, prova que m = inf{c,d} €

[a.b]. Portanto, [a,b] € um sub-reticulado de A.

Seja A um conjunto finito qualquer. Escolhendo um elemento qualquer

z, de A. Se x; é um elemento maximal de A, acabou. Caso contrario,
escolhendo um elemento qualquer r> de A. com 71 < To. Continuando

assim. obtemos uma cadeia de elementos de A.

71 <2< ST S

Como A possui um mimero finito de elementos temos que essa cadeia

nara. dicamos em 7. Partanto o = 7. 4 nm elementa mavimal da 4
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12. Seja m € A um elemento minimal de A. Dado r € A, obtemos r < m
oum < r. pois A é totalmente ordenado. Assim. m = x ou m < r, para
todo r € A. Portanto, m é um menor elemento de A.

13. Falso. Considere o conjunto
A={a} UN,

com a ordenacao que coincide com a de N e 1 < a (faga o Diagrama de
Hasse). Entdo M = a é o tnico elemento maximal de A, mas nio é o

maior elemento de A.

14. (a) E claro que W C W, para todo W € F. Dados U W € F,se U C W
e W C U. entao U = W. Finalmente. dados U.W. Z € F,seUCWe

W C Z. entao ¢ claro que U C Z. Portanto, C é uma relagao de ordem
sobre F.

(b) E claro que {0} C W, para todo W € F. Assim, {0} ¢ o menor
elemento de F. Mais fécil ainda ¢ que W C V, para todo W € F.
Portanto, V7 é o maior elemento de F.

(¢) Confira o Exemplo 3.34.

(d) Segue do item (c).

SECAO 3.4

1. Suponhamos. por absurdo. que v/2 seja um mimero racional, digamos

a
Va=1,
onde a.b € N. Seja

S={nv2:neN e n/2€eN}.

Entdao S # 0. pois b € S. Entdo. existe so € S tal que so < s, para todo
s¢€ S. Pondo so = kv2 e /2 > 1. obtemos

so(V2—1) = soV2 — kv2 = (sg — k)V2 > 0= (89 — k)V2 € S,
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o que é uma contradi¢cdo. De fato. como sgy 2 = 2k e 2 < 2/2 implica
que 2 — /2 < /2 temos que

(sg — kw2 < sg.

2. Considerando os niimeros reais

1|°

<

W
ol &

/<

o

v

temos. pelo Exemplo 3.45. que existe r € Q tal que

a b —
—=<r<—=%&a<rv2<h

\/.3 V2
Portanto. existe um mimero irracional r = rv/2 (prove isto!) tal que
a<xr<b.
Dado b € R. obtemos. pela Lei Ar-

3. Vamos provar apenas o item (c).
quimedes, um elemento m € Z tal que ma > b. Logo. o conjunto

S={keN:(k+1)a>b}
é nio vazio. Assim. S contém um menor elemento. digamos n € S.

Portanto,
na<b<(n+1)asbena (n+1)al

pois n — 1 € S. ou seja.

A outra inclusao é clara.

Note que 1 e 2 nio possuem predecessores imediados em A, pois existe

ce Atal que 1 < ¢ < 2. Além disso.

S =0.5={1.3}V.%={1.3.5....} e S — {1.3.5....:2.4.6}.
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8. Suponhamos que A # S. Entao T = A — S # 0. Logo. T contém um

10.

12.

13.

11.

menor elemento. digamos m € 7. Vamos provar que S = S,,. E claro
que S,, € S. poisse r < m. entdo r € S. pois r € T. Por outro lado,

ser € S.entdo r < m.ouseja. r € S,,.

. Seja S qualquer subconjunto nao vazio de B. Entao f~!(S) é um sub-

conjunto nao vazio de A. pois f é sobrejetora. Logo. f~!(S) contém um
menor elemento, digamos m € f~1(S). E facil verificar que mo = f(m) €
S é o menor elemento de S. Portanto. B é um C'BO.

Como A e B sao conjuntos enumerdveis temos que existem bijegoes f :

N, — Aeg:N, — B. em que
N, ={1.3.7....} e N, ={2.4.6....}.

Assim, pelo Corolério 2.23, f : N; — AUB e g : N, — AUB sao fungoes.

Como
fINiNNy) = g|(Ni N Np)

temos, pelo Teorema 2.33, que existe uma tnica fungao bijetora h : N —
AU B tal que h|N; = f e h|N, = g. Explicitamente,

2

g(%).  se n éum nimero par.

ntl)  gse n é um nimero impar
h(n) ={ 7 (25%) .
2

Portanto, pelo Exercicio anterior, A U B é um C'BO.

Seja F = {S,},c.1 uma familia de segmentos iniciais de A. Considere a
fungao f : A — F definida como f(a) = S,. Entdo f é o isomorfismo
desejado. por exemplo, dados a.b € A, se a # b, digamos a < b, entao
a€ S, Comoaég S, temos que S, # S. ou seja, f é injetora.

Confira o Exercicio anterior.
Dados z,y € A, se f(x) = f(y). entao r = y. pois se T # y, entdo < Y

oux > y. Logo, f(x) < fly) ou f(z) > fly). pois f € estritamente
crescente, o que é impossivel. Portanto. f é injetora. A reciproca é

clara.
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14. Suponhamos que (E. D) seja um corte de A. Dados z € E e y € D,
obtemos r < y ouz > y, pois {E. D} uma particao de A. Se y < x, entio
r € END = 0. o que é impossivel. Portanto, z < y. Reciprocamente,
como {E. D} uma particio de A temos que END =0 e EUD = A.
Agora. sea € Eex < a, entao r € E, pois a ¢ D. Finalmente, se b € D
eb<y.entaoy € D, pois b ¢ E. Portanto, (E. D) ¢ um corte de A.

15. Suponhamos que B seja uma secdo de A. E claro que
BN(A-B)=0e A=BU(A- B).

Agora. se a € B e r < a, entdo r € B, pois B ¢ uma secao de A.
Finalmente. se b€ A -~ Beb <y, entaoy € A— B, pois y ¢ A— B,
entao y € B. Logo.

be BN(A—-B) =10,
o que é impossivel. Portanto, (B. A — B) é um corte de A. A reciproca

é clara.

16. Suponhamos que B possui um menor elemento, digamos m € B. Entao
m < r. para todo r € B. Em particular, m < b. Dado y € S, N B,
obtemos y < b e m < y. Assim, m < b, ou seja, m € S, N B. Portanto,
m é o menor elemento de S, N B. Reciprocamente, suponhamos que
Sy, N B possui um menor elemento, digamos n € S, N B. Dado y € B,
obtemos b < y ou b > y. pois A é totalmente ordenado. Se b <y, entao
n <y. Seb>y, entdoy € SN B. Logo, n <y, para todo z € B.

Portanto, B possui um menor elemento.
17. Confira o Exercicio anterior.
18. Suponhamos. por absurdo, que exista uma familia
S={zn:n€Zs}

Entdo S ¢ () e nao possui menor

Reciprocamente, seja S qualquer
S, obtemos

para todo n € Z..

com I, > Tn+ls
uma contradicgao.

elemento. o que €

enheaninmto nao vazio de A. Entao existe rg € S. Dado r1 €
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o < 11 0u Tg > T;. Se 1o < Iy. acabou. Se 1y > rj. entdo x; € Se

7o > r;. Continuando assim. obtemos uma cadeia de elementos de S,
Tog>TIa> --->Ip> -

Assim, por hipétese. esta cadeia para. digamos em 1. Portanto, m = xx

¢ o menor elemento de S. Finalmente. note que

1
{n+1:n€Z'}

¢ uma cadeia infinita descendente de [0.1]. Portanto. [0.1] ndo ¢ um

CBO.

Confira o Lema 3.50.

Seja f : A — A um isomorfismo qualquer. Entdo r < f(r). para todo
r € A, pois A é um CBO. Por outro lado, como f7l:A— Aéum

isomorfismo temos que r < f~!(z). para todo r € A. Neste caso,

flx) < f(f Yz))=z. VreA

Portanto.
r< flz)<z= f(x) =1z,
ou seja, f = 1.
Como gof:A— Aéum isomorfismo temos. pelo Exercicio anterior,

que go f = I4. De modo inteiramente andlogo. f o g = Ip. Portanto,

g=f"
Seja g : A — B outro isomorfismo. Ent3o g~

fismo. Logo. pelo Exercicio anterior. g = f.

1. B — A4 éum isomor-

Sejam C' C A e D C B tais que 4~ De B~ (. Entdo, pelo Coroldrio
362 C~AouC ~S, paraalguna € 4, e D ~ Bou D = 5,
para algum b € B. Se C' =~ S,. para algum a € A, entdo B ~ S, para

algum o« © A. Loso. welo Taiia O 4




